CS 188: Atrtificial Intelligence
Spring 2010

Lecture 2: Queue-Based Search
1/21/2010

Pieter Abbeel — UC Berkeley

Many slides from Dan Klein

Announcements

= Project 0: Python Tutorial
= OQOuttoday. Due next week Thursday.
= Lab sessionsin 271 Soda:
= Monday 2-3pm
= Wednesday 4-5pm
= The lab time is optional, but PO itself is not
= On submit, you should get email from the autograder

= Potentially more lab sessions or office hours held in the lab --- track the
announcements section on the webpage!

= Written 1: Search
= Qut today, also due next week Thursday.
= Sections starting next week, location: 285 Cory
= Section 101: Tue 3-4pm
= Section 104: Tue 4-5pm
= Section 102: Wed 11-noon
= Section 103: Wed noon-1pm

Today

Agents
Search Problems

Uninformed Search Methods (part review for some)
= Depth-First Search

= Breadth-First Search

= Uniform-Cost Search

Heuristic Search Methods (new for all)
= Greedy Search

Reminder

Only a very small fraction of Al is about making
computers play games intelligently

Recall: computer vision, natural language,
robotics, machine learning, computational
biology, etc.

That being said: games tend to provide relatively
simple example settings which are great to
illustrate concepts and learn about algorithms
which underlie many areas of Al

A reflex agent for pacman

4 actions: move North, East,
South or West

‘ Reflex agent I
= While(food left)

= Sort the possible directions to move according
to the amount of food in each direction

= Go in the direction with the largest amount of
food

A reflex agent for pacman (2)

[Reflex agent |
= While(food left)

= Sort the possible directions to move according
to the amount of food in each direction

= Go in the direction with the largest amount of
food

A reflex agent for pacman (3)

[Reflex agent]
= While(food left)
= Sort the possible directions to move according to the
amount of food in each direction
= Go in the direction with the largest amount of food

= But, if other options are available, exclude the direction we
just came from

A reflex agent for pacman (4)

Reflex agent I

= While(food left)
= |f can keep going in the current direction, do so

= Otherwise:
= Sort directions according to the amount of food
= Go in the direction with the largest amount of food
= But, if other options are available, exclude the direction we just
came from

A reflex agent for pacman (5)

Reflex agent I

= While(food left)
= |f can keep going in the current direction, do so
» Otherwise:
= Sort directions according to the amount of food

= Go in the direction with the largest amount of food

= But, if other options are available, exclude the direction we just
came from

Reflex Agents

» Reflex agents:

» Choose action based on current percept
(and maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

= Act on how the world IS

= Can a reflex agent be rational?

Goal Based Agents

= Goal-based agents:
= Plan ahead
= Ask “what if”

= Decisions based on
(hypothesized)
consequences of
actions

= Must have a model of
how the world evolves
in response to actions

= Act on how the world
WOULD BE

Search Problems

= A search problem consists of:

- e e 8 I O

“N”, 1.0
/

\
“E”, 1.0

= A successor function

= A start state and a goal test

= A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

Example: Romania

= State space:

= Cities
Successor
function:

= Go to adj city
18 ; with cost = dist
Start state:

= Arad

Goal test:

_ _ = Is state ==
dciurgiu forie Bucharest?

Solution?

State Space Graphs

= State space graph: A
mathematical
representation of a
search problem

= For every search problem,
there’s a corresponding
state space graph

= The successor function is
represented by arcs

" We can rarely build this o a iy soaroh problem.
graph in memory (so
we don’t)

State Space Sizes?

= Search Problem:
Eat all of the food

= Pacman positions:
10x12=120

= Food count: 30

Search Trees

N 10— —E, 1.0

= A search tree:
= This is a “what if” tree of plans and outcomes
= Start state at the root node
= Children correspond to successors
= Nodes contain states, correspond to PLANS to those states
= For most problems, we can never actually build the whole tree

Another Search Tree

Arad Fagaras Oradea imnicu Viicaa
= Search:

= Expand out possible plans
» Maintain a fringe of unexpanded plans
= Try to expand as few tree nodes as possible

General Tree Search

function TrEE-SEArCH(problem, stretegy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
it there are no candidates for expansion then return failure
choese a leafl node for expansion zccording to stralegy
it the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes tc the search tree

end
~
» |mportant ideas:
» Fringe Detailed pseudocode
= Expansion is in the book!

= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

State Graphs vs. Search Trees

Each NODE in in the
search tree is an
entire PATH in the

problem graph.
S
-
d e p
P N |
We construct both b c e h r q
on demand — and | N N
we construct as a a h r p q f
little as possible. N ! N
p q f q c G
| /\ I
c a
q ; G

10

Review: Depth First Search

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
stack

Review: Breadth First Search
(a) ©

Strategy: expand
shallowest node first @ Q

e
Implementation: a— . ©
Fringe is a FIFO
P (D

queue

Search
Tiers <

11

Search Algorithm Properties

Complete? Guaranteed to find a solution if one exists?
Optimal? Guaranteed to find the least cost path?

= Time complexity?

Space complexity?

Variables:

n Number of states in the problem

The average branching factor B
(the average number of successors)

C* Cost of least cost solution

s Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm Complete [Optimal |Time Space

DFS Depth First N N Infinite Infinite

Search
mey—(2)

= Infinite paths make DFS incomplete...
= How can we fix this?

DFS

= With cycle checking, DFS is complete.*

1 node
b nodes
b2 nodes
m tiers <
b™ nodes
Algorithm Complete |Optimal |Time Space
/ Path -
R e N o) O(bm)

= When is DFS optimal?

* Or graph search — next lecture.

BFS

Algorithm Complete |Optimal |Time Space
/ Path N
DFS Shesking Y N O(b*1) O(bm)
BFS Y N* o+ O(b*+1)
1 node
b nodes
s tiers
b2 nodes
bs nodes
b™ nodes

= Whenis BFS optimal?

13

Comparisons

= When will BFS outperform DFS?

= When will DFS outperform BFS?

lterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

....and so on.
Algorithm Complete |Optimal |Time Space

/ Path n
DFS |8 eaking Y N o(b™) O(bm)
BFS Y N* o+ O(*+)
ID Y N* O(bs+1) O(bs)

14

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

We will quickly cover an algorithm which does find the least-cost path.

Uniform Cost Search

Expand cheapest node first:

Fringe is a priority queue

Cost
contours

15

Priority Queue Refresher

= A priority queue is a data structure in which you can insert
and retrieve (key, value) pairs with the following operations:

pg.push(key, value)

inserts (key, value) into the queue.

Pg.pop()

returns the key with the lowest value, and
removes it from the queue.

= You can decrease a key’s priority by pushing it again

= Unlike a regular queue, insertions aren’t constant time,
usually O(log n)

= We’'ll need priority queues for cost-sensitive search methods

Uniform Cost Search

Algorithm Complete |Optimal |Time Space
/ Path m

DFS "thegkmg Y N o™ O(bm)

BFS Y N O(b+1) O(b*+h)

ucs Y* Y O(bCe) O™
*UCS can fail if

C*/etiers < actions can get

arbitrarily cheap

16

Uniform Cost Issues

= Remember: explores
Increasing cost contours

= The good: UCS is
complete and optimal!

» The bad:
= Explores options in every

“direction”
* No information about goal
location Goal

Search Heuristics

= Any estimate of how close a state is to a goal
= Designed for a particular search problem
= Examples: Manhattan distance, Euclidean distance

17

Heuristics

Oradea
7/
/ Neami

/ N a
i ~_ 8T
75):' Zerind \\ 151 .
[N lasi
Arad [~ 140 \
T~ . Sibi N 92
" Pt g9y Fagaras \
4, 80 ‘—_q ;]Vaslui
\
\
Timisoara thmnIl:u Vllcea\\\ //
| = Ny = § ’
M~ e _ __\ 211 /142
Lugo] \ 97\\\Fltesu /
70 \ ’:ﬂ'\\\ . / 98 .
™~ 5 Irsova
Mehadia | 146 S/ 10T~ //,/d—“.ceni !
86
" 120 \ //138 / Bucharast \\
Dobreta = /90 h

Craiova / Erorie

M Giurgiu

Straight-line distancs
o Bucharest

Arad 366
Bucharest 0
Crainva 160
Daobreta 242
Etnrie 161
Fagaras 178

Gi in 77
Hirsuva 151
Iasi 226
Lugo] 244
Viehadia 241
Neamt 234
{radea 380
Plrestl 98
Rimmnicu Vilcea 193
Siblu 253
‘Timisoara 329
Urzleeni 80
Vaslui 199
Zerind 374

Best First / Greedy Search

= Expand the node that seems closest...
Arad
sibi

263 0

= What can go wrong?

ard

18

Best First / Greedy Search

= A common case:

= Best-first takes you straight
to the (wrong) goal

= Worst-case: like a badly-
guided DFS in the worst
case
= Can explore everything

= Can get stuck in loops if no
cycle checking

» Like DFS in completeness
(finite states w/ cycle
checking)

= Can we leverage the heuristic information
in a more sound way?

—->A* search

We will cover that on Tuesday!

19

20

